

The Challenge and the Opportunity for Manufacture of Zinc Magnesium Oxide Ceramics

Jing Yang, Tzu-Chieh Lin, Bill Manett, Jeremy Young, Dan Rooney Eugene Medvedovski SCI Engineered Materials, Inc The Science of Engineered Materials™

History of SCI

- Founded in 1987 by Prof. Funk (Ohio State University) as Superconductive Components, Inc. in Columbus, OH. Changed name to SCI Engineered Materials, Inc. in 2007
- Initially focused on R&D with high temperature superconducting materials and devices
- Developed manufacturing capabilities to produce advanced ceramic compositions for sputtering targets
- Manufacture products for diverse global markets
- Continue to leverage manufacturing capabilities, intellectual property and proprietary knowledge into complementary growth markets

SCI Timeline

Contents

- Opportunities of (Zn,Mg)O
- Ceramic sputtering targets manufacturing process
- Challenge of (Zn,Mg)O manufacture

Application of (Zn,Mg)O

Transparent Conducting Thin Films

- Wide bandgap semiconductor (>3.3 eV)
 - Direct bandgap for up to 30% MgO
 - Wurtzite structure
 - Light emitting diodes
 - Photodetector
 - (Zn,Mg)O/ZnO multilayer \rightarrow 2D gas for high frequency high powder devices
- Buffer/i layer for CIGS thin film solar cell

Films with thickness of 10s of nanometer

Alternative buffer layer in thin film solar

Buffer layer for CIGS thin film solar cell

FIGURE 4: Scheme of different CIGS cell stacks on glass/Mo substrates with alternative buffer layer systems in comparison to the commonly used CdS/i-ZnO.

* W. Witte et al., Status of current research and record cell efficiencies

- Currently use CdS as the buffer layer
- Tunable bandgap for band alignment (~3.3eV 3.6 eV)
- Tunable lattice parameter for lattice match

Proprietary to SCI Engineered Materials

Methods for (Zn,Mg)O deposition

Introduction: scope of this work

Development of high density (greater than 90% of TD), low porosity, high uniform (Zn,Mg)O sputtering targets for thin film processing

High density:

Uniform sputtering deposition

Low porosity:

→ High strength, hardness and other mechanical property

 \rightarrow Low contamination from gas trapped inside the pores during sputtering

- High uniform (MgO has limited solid solubility in ZnO)
- Preferably conductive → DC sputterable

No (Zn,Mg)O ceramic targets are industrially produced so far
Proprietary to SCI Engineered Materials

Contents

- Opportunities of (Zn,Mg)O
- Ceramic sputtering targets manufacturing process
- Challenge of (Zn,Mg)O manufacture

Ceramic sputtering target manufacture process

- Milling: reduction of particle size to improve sintering and homogeneity
- Forming: shape small particle powders into a solid piece by applying pressure, e.g. uniaxial or cold isostatic pressing, or by casting (slip casting, gel casting, pressure filtration)
- Sintering/Hot Press/HIP: the process of heating with or without pressure to reach a high level of consolidation and desired microstructure.
- Forming and sintering routes are selected based on shape and size of components, available equipment, starting materials features and properties requirements

Basic physics in sintering process:

Sintering time

Densification is competing with coarsening (grain growth), thus there is a maximum sintering time to achieve a highest density at a certain sintering temperature.

Contents

- Opportunities of (Zn,Mg)O
- Ceramic sputtering targets manufacturing process
- Challenge of (Zn,Mg)O manufacture

Challenge of (Zn,Mg)O manufacture process: general processing requirements

Necessity to reach high density and high electrical conductivity sputtering targets \rightarrow to be able to use DC magnetron sputtering (industrial film technology)

MgO content – up to 30 wt.%

- Low MgO content 5-15%
- High MgO content 20-25%

General processing route to produce sputtering targets

- Highly homogeneous powder from commercially produced powders
- Colloidal processing
- Forming for possibility to obtain

planar targets (tiles of 600-1000 cm² and more) rotary targets (hollow cylindrical bodies)

- Pressureless sintering at rather low temperatures to use conventional electric kilns
- Grinding (machining)
- Bonding to metallic substrate

Challenge of (Zn,Mg)O manufacture process: mixing-milling

To reach high homogeneity and particle size well suitable for low-temperature sintering

Different ball mill condition

Milled in water 4.68g/cm³ (91.9%TD*)

Milled in IPA 4.75g/cm³ (93.2%TD*)

* Estimated TD is a linear interpretation between two compound due to lack of literatures.

- Milled in water: MgO react with water, very high viscosity \rightarrow inefficient milling
- Milled in IPA: better uniformity Proprietary to SCI Engineered Materials

14

Challenge of (Zn,Mg)O manufacture process: milling

- Challenge of milling in IPA:
 - Evaporation of IPA
 - Immediate "cake" formation
 - Strong smell of IPA
 - Enclosed production milling system needed
 - Non-compatibility with SCI's in house equipment
 - High in cost
- ★ <u>Water based process is preferred</u>→ need to overcome interaction of MgO with water

(higher MgO contents \rightarrow higher hydration)

Exploration of water based process

- (Zn,Mg)O calcination route to "bond" ZnO-MgO and to reduce interaction with water
- Mixing of ZnO and MgO powder for uniform distribution
- Low temperature calcination (up to 1000°C)
- Ball milling in <u>water</u> for desired particle size distribution
- High temperature (1000-1600°C) sintering for densification
- As a reference, ball milling of the same amount of non-calcined ZnO-MgO mixed powder results in viscous "cake-like" slurry
- Calcination can be effective in reducing MgO hydration when using waterbased colloidal processing

Exploration of water based process

XRD analysis and simulation of calcined ZnO-MgO powder

- The simulation indicates a larger lattice plane spacing compound.
- It's possible some weak ZnO-MgO bonds formed during calcination.

Exploration of water based process

XRD comparison of calcined ZnO-MgO powder and sintered (Zn,Mg)O target

 Comparing to calcined powder, the sintered (Zn,Mg)O target shows weaker MgO peaks.

Challenge of (Zn,Mg)O Densification

Sinterability of ZnO-MgO mixture

- High sintering T required to reach high density of (Zn,Mg)O
- Sintering aid can be considered for densification, e.g. Nb_2O_5
- Solid phase sintering through grain boundary diffusion
- Small amount of Nb₂O₅ has been selected as transition valence oxide. Formation of another phase at sintering should be eliminated
- Proprietary to SCI Engineered Materials

Challenge of (Zn,Mg)O Densification

Nb₂O₅ doping for densification

2 3'

- Doping of Nb₂O₅ did increase the density under same sintering condition
- It also modified the microstructure of (Zn,Mg)O (wurtzite → rocksalt?)

SEM analysis on different MgO contents in ZnO matrix

- 5at%, 15at%, 25at% are nominal MgO contents in the composite.
- Sintering conditions were not optimized for each composition.
- Similar microstructure for the matrix composite
- 25at% shows MgO phase precipitation

XRD analysis on different MgO contents in (Zn,Mg)O

XRD analysis of 25at% shows distinct MgO peaks.

EDS analysis on different MgO contents in (Zn,Mg)O

Proprietary to SCI Engineered Materials

EDS analysis on different MgO contents in (Zn,Mg)O

Proprietary to SCI Engineered Materials

- Mg detected in 5at%, 15at%, 25at% composite matrix
- 25at% shows high Mg phase between (Zn,Mg)O matrix-- MgO precipitation
- MgO precipitation is due to 25at% exceeds the solid solubility in ZnO
- Precipitated MgO can be detected via XRD

C. Bergstein, Clarification of Phase Diagram in a (Zn, Mg)O Pseudo Binary System by Using Ultra-Fine MgO Source Powder 24

Challenge of (Zn,Mg)O Sputterability

Metal oxide (Me_xO_y) dopands for increase conductivity

- Pressureless sintered, density up to 94% of TD
- Solid solution ZnO-MgO; no large MgO-Me_xO_y and ZnO-Me_xO_y spinel observed
- Doping Me_xO_y requires higher T to achieve similar density as the (Zn,Mg)O without dopants
- Conductive tile is preferred for DC-sputterable target
- The most conductive sample achieved: ~ 10³ .cm

Scale up process – on going

ZnO-MgO large tile processing:

ZnO-MgO tiles, 94% of TD, area 161cm²

Summary and Future Works

- ✓ ZnO-MgO ceramic sputtering targets with different MgO contents, density >90% of TD and high uniformity have been produced for the first time
- ✓ High electrical conductivity obtained allows DC sputtering process
- Further optimization of the ceramic processing: density increase
- Enlarge targets dimensions
- Rotary targets processing
- Sputtering process study and optimization; thin film evaluation

Thank you!